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Probability

• Probability

– Pr(x) = 0.111… 

• Sum of all possibilities.

• Continuous domain

• You already learned about probability.. 

– Korean education is so tough….T_T….
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Gaussian Probability Generation  
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With C++ or Python,

How to Generate Gaussian Distribution?

• Rand() returns integer from 0 to RAND_MAX(32767)

– Rand() is NOT Gaussian(Normal) distribution

• Remind the video
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*Marsaglia polar method ~ (0,1)r N
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N(0,1) returns Gaussian Distribution 

randn(1,1000) generates

1000 samples 

Question: 

How we generate x with 

mean and standard 

deviation?
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Gaussian Generation 

• Mean value:      is a offset from 0

• Standard deviation
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Gaussian Distribution or

Normal Distribution(Z)

• We learn it at high school, TT.

• Z is called “Normal Distribution”

• X is normalized with mean and standard deviation
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Probability in 2D Space

• How to generate 2D Gaussian Prob.?

– Easy. A= randn(1000,2) and plot(A(:,1),A(:,2),’.’)
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Quiz
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Probability in n-dim. Space

• 1Dim

• N-Dim

• Look, Sigma matrix
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Two types of Probability

• A Priori Probability

– When you use probability, you use a prior probability

• Posterior Probability (Conditional probability)

– Bayesian probability

– Prob. Of A on condition that B occurs,

• A prior and Posterior probability are very different.
12

Pr(A) 0.6

Pr(A | B) 0.6



T&C LAB-AI

Dept. of Intelligent Robot Eng. MU

Robotics

Conditional Probability

• What is Pr(A|B)?

– Probability of A under the Probability of B

– Or Probability of A within the given B
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A B
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= Pr(A|B)
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Why Posterior Prob. Is very different?

• Rock-Paper-Scissors game.

– Prob(Rock) = 1/3

• When a player did “Rock” before, 

– Prob(Rock) is still 1/3?            - No, in general. 14
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Posterior Prob.

• When events A and B occur,

• P(A): Probability of A occurrence

• P(B): Probability of B occurrence.

• P(A^B): Probability of Both A and B occurrence

• Definition:
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Why Posterior Probability?

It reduces Classification Errors..

• What is Classification?

• When a data x is given, is it a specific class, C?

– It is called, “classification”

16

Is it ‘a’?

   if x C or Not
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Is It Big or Not?

• Normal human can say that..

– Right is bigger.. ^_^..

• When a X is given,  can you say that “it is big or not”?

17

<

X
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Posterior Prob.

• When events A and B occur,

• P(A): Probability of A occurrence

• P(B): Probability of B occurrence.

• P(A^B): Probability of Both A and B occurrence

• Definition:
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Classification:

Bayesian Classifier

• Random variable, x : probability of event occurrence.

• When x is given, is x involved in class w1 or w2?

– Ex)

– Assume X is height, 

– When x =  170, is it tall(w1) or not(w2) ? 

19

X

x X
w1w2

Who will 
determine it?
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Classification:

Bayesian Classifier

• Random variable, x : probability of event occurrence.

• When x is given, is x involved in class w1 or w2?
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Classification:

Bayesian Classifier

• Random variable, x : probability of event occurrence.

• When x is given, is x involved in class w1 or w2?
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Samples from Surveys.

• Assume that samples have Gaussian distribution.

• (m1,s1) = ( 181.143, 6.54)

• (m2,s2) = ( 165.14, 3.12)
22
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Classification:

Bayesian Classifier

• Random variable, x : probability of event occurrence.

• When x is given, is x involved in class w1 or w2?

23
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Classification:

Bayesian Classifier

• Random variable, x : probability of event occurrence.

• When x is given, is x involved in class w1 or w2?

24

X

x X

w2 w1

2P( | )x w
1P( | )x w

In w2 group, 
samples xs are 
gathered. 

In w1 group, 
samples xs are 
gathered. 
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Samples.

25

X

x X

w1

1Pr( | )x w



T&C LAB-AI

Dept. of Intelligent Robot Eng. MU

Robotics

For Bayesian Classifier,

p(x|w) and p(w) are required.

• How to find P(w)? 
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n(w1)
=21

n(w2)
=28

P(w1)
=21/(21+28)

P(w2)
=28/(21+28)

P(w1)+P(w2)
=1
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Back to Bayesian Probability

• x is given, is it w1 or w2?
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Definition

Bayesian Classifier 

28
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Finally, p(x)=?

• Finally,

Posterior Probability 29
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Posterior Probability in General

30
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Engineering Notation

31

(x | w) (w)
P(w | x)
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In engineering, likelihood is one of the popular solution.
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What is the difference between

Likelihood and Posterior probability?

• likelihood-based classifier

• Posterior probability-based classifier
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대충 키 큰사람은
평균이 181,
작은 사람은 165

이니,
X= 175는 키가 큰쪽에
확률에 가깝다?

X=175인 경우,
키가 클 확률은 얼마
작을 확률은 얼마이므로
키다 크다 또는 작다..
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Example: Test4.m

• N(m,s)  normpdf in Matlab

• x =175  N(m,s,x=175)

• Likelihood prob. classifier

• Posterior prob. classifier

33

2

2

1 ( )
~ ( , ) exp

22

x
x N


 

 

 
  

 

1

2

( | ) 1 0.0392

( | ) 2 0.0009

P x w pxw

P x w pxw

 

 

1

2

( | ) 1 0.971

( | ) 2 0.029

P w x pw x

p w x pw x

 

 

2

1
1 2

11

(175 )1
( 175 | ) exp

22
p x w



 

 
   

 



T&C LAB-AI

Dept. of Intelligent Robot Eng. MU

Robotics

Theoretical Interest

• We can think error.

• Thus, from posterior classifier, we define p(e)
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Bayesian Error is,

• Very small.

• In many cases, Bayesian classifier is better than you.

• Most classifiers are compared with Bayesian error.

• If you have success of designing new classifier,

in general, its performance is probably rather better 

than Bayesian classifier.

• Mathematically, Bayesian classifier is VERY 

STRONG.

– Question: Why Deep Learning is so good?

– Because, DL has the function of finding GOOD Feature. 35
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Example. Test 5.m 

Plot everything

• P(x)

36
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Likelihood Vs. Posterior
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Overlapped Area

38
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The Most Important Factor of Classifier.

 Minimize Error on Overlapped data

• New Data in Test 6.m

• w1~N(30,2)  w2~N(40,4)   p(w1)=p(w2)=0.5
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Problems of Likelihood.

When _________

• Likelihood CANNOT be used for

• Ex) P(w1)=0.1 P(w2)=0.9 
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Example of Bayesian Classifier

: Sensor for Something

• Example of PSD (distance sensor)

• If (distance>0.8) then “human exists” else “nothing”.

41

Returns “distance”

Accident
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Who will choose threshold?

• 1. Adhoc

– Well, 0.8 could be the possible value.

– You will go to Jail… T_T..

• 2. Likelihood

– After 100 samples, 

– When samples are not balanced… it also fails.

• 3. Bayesian 

– After 100 samples

– You did your best except for Deep Learning..^_^… 42

( | ) ( | ) Humanhuman nothingP x w P x w 

( | x) ( | x) Humanhuman nothingP w P w 
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Specification of Bayesian Classification

• Bayesian classification

– It requires a lot of Samples

– Everything are designed with Probabilistic Distribution

– Therefore, Modeling-based Method( Parametric Method)

• When class is added in online environment, it is 

useless.

– But, most classifications are useless, too.

• When new samples cannot be used.

– After sampling, Bayesian classifier is calculated.

• Any method in which New samples are updated,

– Non parametric method( usually, Kernel based method) 

43
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Classification and Features

• x is a random variable.

• But, x is also called as a feature vector.

• In a given problem, you should find a good feature.

• Grade, creativity, moral attention could be features for 

recruiting students.

• PSD distance is not enough. Movements could be OK.

• Without GOOD features, classifier cannot work.

44


