
T&C LAB-AIRobotics

Computer Graphics and Programming

Lecture 8

Basics of OpenGL

Jeong-Yean Yang

2020/12/8

1

T&C LAB-AI

Introduction to OpenGL1

2

T&C LAB-AIRobotics

Rendering API

• OpenGL

– Open Graphics Library proposed by Silicon Graphics Inc. in

1992

– Silicon Graphics Inc. produces Computer Graphics

Workstation(The father of computer graphics)

– OpenGL is the Strong Standard Platform for NVidia or AMD

– OpenGL works on Windows, Linux, Android, iOS, and even

any kinds of embedded machine.

• DirectX

– Microsoft challenges to OpenGL World.

– It works on Windows compatible devices, such as PC, Xbox,

Sega, and Dreamcast
3

T&C LAB-AIRobotics

What is OpenGL’s purpose?

• OpenGL fill polygons with colors by Lights and materials.

• OpenGL uses Hardware acceleration  Fast speed.

4

Vertex
Polygon

Perspective
Projection

Z-buffering

Polygon
Based

Rendering

Light and
Material

MoveTo
LineTo

Wireframe

OpenGL’s Area

Lecture 1~7 Lecture 8~

T&C LAB-AIRobotics

History of OpenGL

• 1.0~ 1.5 : glPushMatrix, glPopMatrix

– Push and Pop structures are used

– OpenGL ES ver. 1.x

• 2.1: Vertex Buffer Object (VBO)

– glGenBuffer, glBindBuffer

– OpenGL ES ver. 2.x

– Shading language(GLSL) appears.

• 3.0: Vertex Array Object (VAO)

– glBindVertexArray

– OpenGL ES ver. 2.x
5

Still VBO is more popular than VAO

T&C LAB-AIRobotics

OpenGL Architecture in this Class

• GL.h + GLEW for

our example

• GLSL works on

Only GLEW library.

6

OpenGL.dll
in Windows

System directory

GL.h
OpenGL.lib
(1.5~2.x)

GLEW
OpenGL

Wrapper library

Dll
wrapper

GLSL

VBO

Graphic
Card

T&C LAB-AIRobotics

Basic Directory for OpenGL usages

• Your App(uGL-01-Basic) uses “lib/glew/include”

• Glew.h and glew32.lib provide interfaces for glew32.dll

7

uGL-01-Basic

uGL-02-xxx

GL/glew.h

Win32/glew32.lib

Your App

glew32.dll

T&C LAB-AI

OpenGL in Windows Environment

Something Hard
2

8

T&C LAB-AIRobotics

uGL-01-Basic

New class, “uGL” for OpenGL

9

Your Program uses
1. glew/include
2. Glew/lib

 Project settings are changed.

Graphics
routines

T&C LAB-AIRobotics

Use files under “lib”

Set Include directory

• Additional include directories

– ..\..\lib; ..\..\lib\glew\include

• .\ = “sw\common\uGL-01-Basic”

• ..\ = “sw\common”

• ..\..\lib=“sw\lib”
10

T&C LAB-AIRobotics

Use files under “lib/glew/lib”

Set Library Directory

• ..\..\lib\glew\lib\release\win32

11

Embed glew32.lib
into your program

T&C LAB-AIRobotics

Link glew32.lib and OpenGL32.lib

into your App

12

Warning!!
ONLY x86 (32bit)

T&C LAB-AIRobotics

uGL.h

13

Header
file

Device
context for
OpenGL

T&C LAB-AIRobotics

uGL.cpp

14

T&C LAB-AIRobotics

15

T&C LAB-AIRobotics

uGL structure

16

uGL

Run() for animation

Draw() for drawing

Loading() for data loading

New feature for OpenGL
programming

Draw object with uObj
and OpenGL fuctions

• glClearColor  fills background color (Erase all)

• glFinish  Rendering finishes here.

T&C LAB-AIRobotics

Ex) uGL-01-Basic

17

SetBK(RGB(0,0,0));



glClearColor(info.r,info.g,info.b,info.a);

SetBK(RGB(255,0,0));



glClearColor(info.r,info.g,info.b,info.a);

T&C LAB-AI

Draw Polygon by

Vertex Buffer Object (VBO)3

18

T&C LAB-AIRobotics

Basic Structure in this Class

• uGL : OpenGL environment

• uObj: VBO-based Object Modeling

• uShader: Shader(GLSL)-based rendering

• uCam: perspective mapping(screen) and viewpoint

transform (model)

19

GLSL
(uShader)

Vertex
buffer
(uObj)

Screen

Model

Color

Camera
(uCam)

uGL

Rendering

T&C LAB-AIRobotics

Data Loading Must be in OpenGL Thread

• OpenGL has its own Thread.

• uGL::Draw() and uGL::Loading() work in OpenGL

thread

• Keep it in your mind:

• Loading out of OpenGL thread is NOT applied

• Any glxxxxx function, Shader, and VBO must be used

in Loading() and Draw() functions(exactly in OpenGL

thread)

20

T&C LAB-AIRobotics

Draw Polygon in OpenGL
Vertex has Position and Normal Vector

• A vertex

– has the position, x, y, and z

– Has the normal vector, nx, ny, nz

• vs is the handle for vertex buffer

• fs is the handle for polygon(face or element) buffer. 21

Polygon

uVector pVer[3]

uPolygon poly.set(0,1,2)

0 1

2

Case 1) MFC part
Case 2) VBO part

T&C LAB-AIRobotics

Copy Vertex Memory in CPU

into Vertex Buffer (VBO) in GPU

22

• Float = 4byte, unsigned short = 2byte

• Each point in the polygon has 24 bytes

– 3 float position variables, x, y, and z (12 bytes)

– 3 float normal vector variables, nx, ny, and nz (12bytes)

• Polygon has 3 Points (24x3 =72bytes)

• Polygon Index has 3 indices (0,1,2) = (2x3 = 6bytes

VBO

Vertex buffer

Memory in CPU Memory in GPU

72 bytes

6 bytes

T&C LAB-AIRobotics

1. Generate Vertex Buffer

in “Loading” function

• glGenBuffers creates storage(or array) in the GPU.

• 72 bytes for vertices and 6 bytes for index are not

allocated yet.
23

glGenBuffers(1,&vs);

72 bytes

6 bytes

glGenBuffers(1,&fs);

T&C LAB-AIRobotics

2. Copy Vertex into GPU

24

VBO

72 bytes

glBindBuffer(GL_ARRAY_BUFFER, vs);

glBindBuffer(GL_ARRAY_BUFFER, 0);

Open VBO

Close VBO

VBO

1) Allocate 72 bytes
2) Copy pVer into GPU72 bytes

glBindBuffer(GL_ARRAY_BUFFER, vs);

glBindBuffer(GL_ARRAY_BUFFER, 0);

Open VBO

Close VBO

glBufferData(GL_ARRAY_BUFFER, 72, pVer, GL_STATIC_DRAW);

2.1 Open VBO memory in GPU

2.2 Allocate and Copy 72bytes

T&C LAB-AIRobotics

2. Copy Vertex into GPU

25

2.3 VBO has two fields (position and normal)

12 bytes position

12 bytes normal

glEnableVertexAttribArray(0); 0
glEnableVertexAttribArray(1); 1

glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 12,
(void*)0);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 12,
(void*)12);

glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);

0: glVertexAttribPointer(0, 3, GL_FLOAT,
GL_FALSE, 12, (void*)0);

Float x,y,z = 3 EA

Float x,y,z = 12bytes

1: glVertexAttribPointer(1, 3, GL_FLOAT,
GL_FALSE, 12, (void*)12);

Position has 12 bytes

Float nx,ny,nz

T&C LAB-AIRobotics

3. Copy Face Index into GPU

• glBufferData has two types

– Vertex buffer (72 bytes)

– Polygon index buffer (6 bytes)

• Now, loading is finished. 26

6 bytes

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, fs);

glBufferData(GL_ELEMENT_ARRAY_BUFFER, 6, face,
GL_STATIC_DRAW);

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);

Open VBO

Close VBO

glBufferData(GL_ARRAY_BUFFER, 72, pVer, GL_STATIC_DRAW);

glBufferData(GL_ELEMENT_ARRAY_BUFFER, 6, face, GL_STATIC_DRAW);

T&C LAB-AIRobotics

4. Draw Polygon

Remind: All data are uploaded into GPU

27

Open Vertex buffer

Close vertex buffer

Close index buffer

Open index buffer

Draw Polygon 3 points by referring index buffer

glUnivorm4f(ooo, r, g, b, a)

T&C LAB-AIRobotics

Ex) uGL-02-Polygon-Color

Draw a Triangle Polygon

28

(0,0,0)

(1,0,0)

(0,1,0)

• Why Width is NOT same with Height?

– It is NOT in space, [-320,320], but in space, [-1 1]

T&C LAB-AIRobotics

ex) uGL-03-Object-Camera
• The Unit Space, [-1, 1] is scaled by Projection.

29

What is it?

T&C LAB-AIRobotics

Ex) uGL-03-Object-Camera

Result

• What is model and screen from pCurrentShader(uShader)?

– We will learn GLSL in later parts
30

Camera
Works!!

Load shader

Screen
(perpective
Mapping)

Model
(Camera

Transform)

glUniformMatrix4fv(pCurrentShader->screen,
1, 0, cam.P.v);

hMat h = cam.T*cam.R;
glUniformMatrix4fv(pCurrentShader->model,
1, 0, h.v);

T&C LAB-AI

Objects in OpenGL4

31

T&C LAB-AIRobotics

Build Objects in Class, uObj

• 1. MakeBox, MakeCyl as in the previous examples

• 2. Update() is modified for copying data into GPU

32

T&C LAB-AIRobotics

Drawing in uGL

33

Set camera variable on shader

Draw object

T&C LAB-AIRobotics

Drawing in uObj

(Set object’s color)

34

Set three colors on shader

T&C LAB-AIRobotics

Drawing in uObj

(call vertex VBO)

35

Open Vertex (Position and Norma) VBO

T&C LAB-AIRobotics

Drawing in uObj

(call Polygon VBO)

36

Call Face(polygon) index VBO

T&C LAB-AIRobotics

Drawing in uObj
Draw Polygons with indexed vertices

37

Draw Polygons

T&C LAB-AIRobotics

Drawing in uObj

(close VBO handle)

38

Close VBO handles

T&C LAB-AIRobotics

uVector is Replaced by uVertex
(uVertex is defined in uVector.h)

• uVertex has

– uVector position

– uVector normal

• uObj has uVertex (instead of uVector)

– pVer[0].v  Position

– pVer[0].n  Normal

39

T&C LAB-AIRobotics

Ex) uGL-04-uGL-box

(normal vectors are (0,0,1)

40

T&C LAB-AIRobotics

Ex) uGL-04-uGL-box

Result

• Set Read at Normal

vector direction

• Set White at Negative

Normal vector direction

• NORMAL Vector is

very important for color

display

41

Viewpoint

Normal
vector

T&C LAB-AIRobotics

Ex) uGL-05-uGL-box-normal

(Red and White)

• At the Top, normal vector

are (0,0,1)

• At the bottom, normal

vectors are (0,0,-1)

42

Viewpoint

n(0,0,1)
Red

n(0,0,-1)
White

T&C LAB-AIRobotics

Ex) uGL-05-uGL-box-normal2

• Shader color is Red and Black

• Normal Vector is crucial point for Color Expression

• You also think that

– GLSL based Shader can control light and color

43

T&C LAB-AIRobotics

Complete Example in OpenGL

ex) uGL-06-uGL-uWnd

• Every Examples and

Assignments are based on

uGL-06-uGL-uWnd example

• Library has uGL, uShader, etc.

• uObj and uWnd will be

modified for a variety of demo.

44

Library
directory

T&C LAB-AIRobotics

Basic Structure in Examples

• OpenGL interfaces are defined in uGL

• uWnd is inherited by uGL

– uWnd is for your own purposes

• uObj is for your own object building

45

Library

uVector uVertex

uShader

uCam

uGL

uWnd
Inherited by

uGL

uObj

All
Examples

And
Homeworks

T&C LAB-AI

Color in OpenGL

Normal Vector and

Three Colors

(Diffuse, Ambient, Specular, …)

5

46

T&C LAB-AIRobotics

Illumination:

Energy of Physics

• Illumination in Physical world

– Radiance: the flux of light energy in a given direction

– Visibility: Light energy falls upon a surface

• (Remind theHidden surface removal)

– Energy balance: local balance of energy in a scene

• The sum of light energy is equal to energy sources.

• Approximation of Colors and Light in graphics

– Ambient: approximation of the global energy

– Lambertian: approximation of diffuse interaction between

materials and lights

– Phong: approximation of specular effects.

47

T&C LAB-AIRobotics

Computer Graphics has Three Color Types

• Ambient : the color of an object in shadow

– Without no additional Light source

• Diffuse: the color of an object surface

– Apple is Red. (Diffuse color is red)

• Specular: shiny color on the surface by

light source.

48

T&C LAB-AIRobotics

All Normal Vectors are Same
ex) normal vectors are (0,0,1) against viewpoint direction

• testZ.exe

49

T&C LAB-AIRobotics

All Normal Vectors are Calculated for

Each Polygon

50

T&C LAB-AIRobotics

Ambient, Diffuse, and Specular

51

T&C LAB-AIRobotics

OpenGL Vs. Ray Tracing

Calculation of Light Energy in a Scene

• OpenGL

– Uses diffuse, ambient, and specular  Approximation

– Reflection is NOT real..

– Light sources are limited

• Ray tracing

– Calculating colors by following a ray.

– The colors of each pixel is determined by calculating

geometries and light sources  Higher computation

– You will do it at the latter part of the semester.

52

T&C LAB-AIRobotics

Lambertian Reflection Model

• Lambertian model defines Diffuse color

– by Only Normal vector

• OpenGL rendering calculates cosine for diffuse color53

n̂

surface

î   r̂
camera

ˆ : Illumination(light source)

ˆ : Reflection

ˆ :

i

r

n normal

ˆ ˆcos i n 

v̂

T&C LAB-AIRobotics

Phong’s Reflection Model
(Phong Shading for Specular color)

• Phong model determines colors:

54

n̂

surface

î   r̂ camera

ˆ : Illumination(light source)

ˆ : Reflection

ˆ :

i

r

n normal



 

 

ˆ ˆ ˆ ˆ ˆ
2

ˆ ˆˆ ˆ ˆ2

i r
i n n

r i n n i




  

ˆ ˆcos r v 

v̂

Reflection vector Cosine for specular
color

()S 

Specular parameter of surface
(Glass: high, wood: low)

S() cos s 

T&C LAB-AIRobotics

Phong’s Specular in Your Example

• Open solid.fsh (GLSL fragment shader)

• GLSL programming uses

– the basic concept of Ray Tracing Method.
55

 

 

ˆ ˆ ˆ ˆ ˆ
2

ˆ ˆˆ ˆ ˆ2

i r
i n n

r i n n i




  

ˆ ˆcos r v  S() cos s 

T&C LAB-AIRobotics

History behind OpenGL

• 1st period(~2003) : Color by texture mapping. No light.

• 2nd period(~2010): Ambient, Diffuse, and Specular

• 3rd period(~2018): GLSL based Phong Shading

• GLSL is a simple tool for mimicking Ray Tracing

– Such as Phong shading, Shadow, Cartoon Rendering
56

No light effect Specular Phong shading

T&C LAB-AIRobotics

Shading with Normal Vector

• Lambertian model (diffuse color)

– Uses cosine function between surface normal and light.

• Shading approximates colors between vertices.

57

ˆ ˆcos i n 

Fill Polygon

f̂ ŝ

ˆˆ ˆ(1)v f s   

Interpolation
among vertices

ˆ
fn

ˆ ˆ ˆ(1) f sn n n   

ˆ
sn

Interpolation of
normal vector

T&C LAB-AIRobotics

Why Shading uses

Interpolation of Vertex Normal Vectors

• GPU memory has been limited

– 1. Only vertex has graphical information

– 2. If vertex has normal vector,

– 3. Then, interpolation of normal vectors varies smooth color transition

– (4. But today we have GLSL for Pixel-based color management)
58

ˆ
fn ˆ

sn

ˆˆ ˆ ˆ ˆ(1) cosf sn n n i n      

T&C LAB-AIRobotics

Shading with Normal

• Definition of Vertex Normal

– Each vertex has its own normal

– Any Normal will be good(Thus, it is NOT a surface normal)

• Normal vector in shading means the color variance

59

f̂

ŝ

t̂

ˆ
fn

ˆ
sn

ˆ
tn

T&C LAB-AIRobotics

Famous Three Shading

• 1. Flat shading

• 2. Gouraud shading

• 3. Phong shading (Phong Reflection Model)

60

Flat Shading Gouraud Shading Phong Shading

T&C LAB-AIRobotics

Flat Shading:

How to express surfaces with Flatness

• All vertex normal in a polygon are same

61

ˆ
fn

ˆ
sn

ˆ
tnn̂

ˆˆˆ ˆ ˆ(t) ()

ˆ ˆ ˆ ˆ
f s t

n s f s

n n n n

   

  
ˆ ˆcos i n 

All pixel colors
in the polygons
are same!

ˆ ˆ cos

Same i n

for all pixels

 

T&C LAB-AIRobotics

Gouraud Shading

How to express surfaces with Smoothness

Gouraud shading averages

all neighboring polygons’ normal vectors

 Normal vectors are smooth
62

n̂

1̂n

2n̂
3n̂

1 2 3
ˆ ˆ ˆ

ˆ
3

1
ˆ

N

i

i Neighbor

n n n
n

n
N 

 


 

T&C LAB-AIRobotics

Concept of

Flat Vs. Gouraud Shading

63

Flat
Shading

Object
Normal

Gouraud
Shading

T&C LAB-AIRobotics

Flat Shading:

Pseudo code

64

• Average of vertex’s Normal

1. Create new vertex with nPoly * 3
uVertex *pNew = new uVertex[nPoly*3]

2. k = 0
For i = 0 to nPoly

uPolygon p = pPoly[i]
n = GetNormal(p)

pNew[k].v = pVer[p.f];
pNew[k].n = n;
k++;
pNew[k].v = pVer[p.s];
pNew[k].n = n;
k++;
pNew[k].v = pVer[p.t];
pNew[k].n = n;
k++;

3. delete pVer
nVer = nPoly*3
pVer = pNew;

Example
1. pNew=new uVertex[36]
2. For i = 0 to nPoly
3. ex)

polygon 0 has { 3, 2, 6}
n = GerNormal(Polygon 0)
pNew[0].v = pVer[3]
pNew[0].n = n
pNew[1].v = pVer[2]
pNew[1].n = n
pNew[2].v = pVer[6]
pNew[2].n = n

polygon 1 has { 3, 6, 7}
n = GerNormal(Polygon 0)
pNew[i].v = pVer[3];
pNew[i].n = n
….

T&C LAB-AIRobotics

Gouraud Shading:

Pseudo code

65

• Average of vertex’s Normal

1. Create new vertex buffer with vertex number
uVector *psum = new uVector[nVer]

2. Create new int buffer for counting overlapped vertex.
int *nsum = new int [nVer]

3. For i = 0 to nPoly
uPolygon p = pPoly[i]
n = GetNormal(p)

psum[p.f] = psum[p.f] + n; nsum[p.f]++;
psum[p.s] = psum[p.s] + n; nsum[p.s]++;
psum[p.t] = psum[p.t] + n; nsum[p.t]++;

4. For i= to nVer
psum[i] = psum[i]/nsum[i]
pVer[i].n = psum[i].Unit()

Example
1. pSum=new uVector[8]
2. nPoly = 2*8

polygon 0 = { 3,2,6}
polygon 1= { 3,6,7}
….

pSum[3] += polygon 0’s normal
…
pSum[3]+= polygon 1’s normal
…

