
T&C LAB-AIRobotics

Computer Graphics and Programming

Lecture 12

GLSL
by extending Ray Tracing

GLSL: OpenGL Shading Language

Jeong-Yean Yang
2020/12/8

1

T&C LAB-AI

GLSL by Ray Marching1

2

T&C LAB-AIRobotics

OpenGL Shading Library (GLSL)

• We have learned OpenGL and Ray Tracing

– How to Add Ray Casting or Semi Ray Tracing on OpenGL’s

environment?

– OpenGL is based on Polygon-based Rendering

• Ray Tracing determines Pixel’s Color by calculating color

with respect to

– Normal vector of surfaces

– Light position, reflection, and refraction vector

• OpenGL permits One pixel’s color by GLSL programming

3

T&C LAB-AIRobotics

Computational Burden in Ray Tracing

• What is the most Painful works in Ray Tracing?

• Finding Intersection point is complex and slow.

• Sampling becomes the Approximation Technique for

Intersection by fast computation.

 Ray Marching technique is used for OpenGL rendering
4

Ray Casting

Ray

Ray Tracing

Object

Color

Color

Ray

Reflection

Refraction

T&C LAB-AIRobotics

Ray Marching for Volumetric Rendering

• OpenGL uses Z buffer for Volume Rendering

• Z buffering projects all data onto one scene image

• Rendering requires volumetric operation
5

Z=1 Z=-1 Perspective MappingScene

Z=1 Z=-1

Order

Red is above blue

T&C LAB-AIRobotics

Ray Marching for Fast Speed

• While doing volumetric rendering,

– first sphere s0 meets object B and fills the volume

– Second sphere s1 and s2 meets object B and fill the volume

– Final sphere, s3 meets object A and Calculate Intersection Point

– It is Faster than Ray tracing
6

A

B

Viewpoint

Ray

s0

s1

s2
s3

T&C LAB-AI

GLSL Structure2

7

T&C LAB-AIRobotics

How to OpenGL calculate One Pixel Color?

 Vertex shader and Fragment Shader

8

Ref: uGL-39-GLSL-Basic

PhongTex.vsh

PhongTex.fsh

T&C LAB-AIRobotics

GLSL Architecture

• Script(vsh and fsh) is compiled and uploaded by

uShader class 9

Vertex Shader
(*.vsh)

Fragment Shader
(*.fsh)

VBO

OpenGL’s
Compiler

GLSL
Program

GPU
Memory

Rendering

Our Program
Vertex Transform

Set Color value

GLSL (vsh, fsh) uShader

Find RGB
With vsh
and fsh

Pixel Color

T&C LAB-AIRobotics

App  VSH  FSH

• Our App transfers VBO handle to vsh

– Vertices, normal, and textures.

– Ambient, diffuse, and specular is given to vsh

• VSH file : do transform of vertices and normal.

– Gl’s result = P*H*vertices

– Given color is not used here  pass colors into FSH

• FSH file: do calculation of colors

– VSH provides color and geometry information.

– FSH calculate RGB.

10

T&C LAB-AIRobotics

GLSL Basic Variable Types

1. attribute

Connected with VBO

2. varying

Variables in vsh is transferred

to variables in fsh

3. uniform

Connected with my program

11

T&C LAB-AIRobotics

GLSL Grammar

• It is similar to C language

• Caution: some variables are very different

– Ex) A= 1  A=1.0

– Ex) vec4 a = vec4(0,0,0,1), a.xyz = vec3(1,2,3)

– Ex) You cannot modify “varying variable”

• varying vec4 diffuse;

• vec4 v = vec4(1,2,3,0);

• diffuse = v  Error

• See example of solid.fsh in “Blue example” of uGL-45-Sphere-

Gouraud-GLSL

• Reference

– https://www.khronos.org/opengl/wiki/Data_Type_(GLSL)#Ve

ctors
12

T&C LAB-AIRobotics

APPVSHFSH

Variable Connection

13

VBO handle
Our App

Screen(P)
Our App

Model(H)
Our App

Color
Our App

VSH

attribute
Vertices,
Normals
textures

uniform
screen
model

uniform
colors

GL’s
Internal
variables

varying

variables

FSH
texture
Our App

uniform
texture

Rendering

varying
variables

T&C LAB-AIRobotics

See Example uGL-39-GLSL-Basic

attributes in vsh

14

VSH file

Lecture 9
pp. 26

uVertex uses vertex, normal, and texture, u and v

 Three Attributes are defined.

T&C LAB-AIRobotics

See Example uGL-39-GLSL-Basic

uniform in vsh

15

uObj::Draw()

uShader::Load()

Our Program

T&C LAB-AIRobotics

See Example uGL-39-GLSL-Basic

uniform in vsh

16

uObj::Draw()

uShader::Load()

Our Program

T&C LAB-AIRobotics

See Example uGL-39-GLSL-Basic

uniform in vsh

17

uObj::Draw()

uShader::Load()

Our Program

T&C LAB-AIRobotics

See Example uGL-39-GLSL-Basic

uniform in vsh

18

screen
model

Perspective
mapping,
H transform

uShader’s
variable

Our App

GLSL in
GPU

T&C LAB-AI

Vertex and Fragment Shader

(VSH and FSH)3

19

T&C LAB-AIRobotics

Meaning of “screen and model” in vsh

• gl_Position is rendering result on 2D display

– Screen(perspective mapping) is required

• eyePosition(Viewpoint) and normal vector

– need not perspective mapping(screen)
20

Cam.P

H model

screen

object
H P

T&C LAB-AIRobotics

Vertex shader Vs. Fragment shader
• VSH for only Transform

– Bypassing Our App’s parameter into FSH

– APP  VSH  FSH

• VSH is not so unique in many examples

• FSH is designed to calculate Each Pixel Color

• Keep it in your mind

– VSH and FSH are Not for Objects,

– But for Each Pixel Color of objects

21

T&C LAB-AIRobotics

App, VBO, VSH, and FSH

Connection Diagram

22

App

VSH

FSH

VBO
Position,
normal,
UV

Texture
texture

varying

uniform

attribute

P, H, color

position, normal, color

uniform

T&C LAB-AIRobotics

FSH EX1) uGL-02-Polygon-Color

solid.vsh and solid.fsh

23Solid.vsh

Solid.fsh

result

uObj.cpp

T&C LAB-AIRobotics

FSH Ex2) uGL-03-Object-Camera

solid.vsh and solid.fsh

24

Solid.vsh

T&C LAB-AIRobotics

Lambertian Diffuse and Phong’s Specular Effect
FSH Ex 3) uGL-10-uWnd-Box-Gouraud

25

Solid.vsh

Solid.fsh

T&C LAB-AIRobotics

Whenever OpenGL draws one pixel,

GLSL(Vsh and Fsh) is called by GPU

• As a result,

• eyePosition by model*vertices is considered as

“Intersection Point” by the Ray from viewpoint(0,0,0)

26

Solid.vsh

OpenGL calculates intersection
point for painting as in Ray Tracing

T&C LAB-AIRobotics

Think as in Ray Tracing,

Can you Read it Now?

27

n̂

surface

î   r̂
camera

ˆ : Illumination(light source)

ˆ : Reflection

ˆ :

i

r

n normal

v̂

P

T&C LAB-AIRobotics

Think as in Ray Tracing,

Can you Read it Now?

28

n̂

surface

î   r̂
camera

ˆ : Illumination(light source)

ˆ : Reflection

ˆ :

i

r

n normal

v̂

P

Light source
ˆL i

T&C LAB-AIRobotics

Lambertian Dot Product for Diffuse

29

n̂

surface

î   r̂
camera

ˆ : Illumination(light source)

ˆ : Reflection

ˆ :

i

r

n normal

v̂

P

ˆ ˆcos i n 

T&C LAB-AIRobotics

Lambertian Dot Product for Diffuse

30

n̂

surface

î   r̂
camera

ˆ : Illumination(light source)

ˆ : Reflection

ˆ :

i

r

n normal

v̂

Pcos 0 : Hidden surface 

T&C LAB-AIRobotics

Phong’s Specular Color with Reflected Vector

31

n̂

surface

î   r̂
camera

ˆ : Illumination(light source)

ˆ : Reflection

ˆ :

i

r

n normal

v̂

P

If It is Not a Hidden surface

the Ray from viewpoint(0,0,0)

T&C LAB-AIRobotics

32

n̂

surface

î   r̂
camera

ˆ : Illumination(light source)

ˆ : Reflection

ˆ :

i

r

n normal

v̂

P

If It is Not a Hidden surface

the Ray from viewpoint(0,0,0)

ˆ ˆcos r v  S() cos s  

Phong’s Specular Color with Reflected Vector

T&C LAB-AIRobotics

33

n̂

surface

î   r̂
camera

ˆ : Illumination(light source)

ˆ : Reflection

ˆ :

i

r

n normal

v̂

P

Phong’s Specular Color with Reflected Vector

Color = ambient + diffuse * cos(q) + specular * pow(angle,100)

T&C LAB-AIRobotics

Ex4) uGL-40-GLSL-Box-Gouraud

Two types of Diffuse

34

Control
diffuse by
GLSL

T&C LAB-AIRobotics

Ex5) uGL-40-GLSL-Box-Gouraud

Ambient Effect

35

Basic Type

Q: Why lower ambient becomes darker?

T&C LAB-AIRobotics

Ex6) uGL-40-GLSL-Box-Gouraud

More Specular by Power and by Factor

36

Pow by 100

Pow by 1000

Specular * 5.0

Specular * 1.0

Specular * 1.0

Pow by 100

T&C LAB-AIRobotics

Simple Cartoon Rendering

• Game with Oriental ink painting

37

T&C LAB-AIRobotics

Edge is Over colored using Dot Product

ex)uGL-41-GLSL-Dog-Rendering

38View point
(light source)

n̂

v̂

Black

color

L 0

ˆˆcos

P

n L

 



T&C LAB-AIRobotics

Ex.7) uGL-41-GLSL-Dog-Rendering

Cartoon-Rendering

39

L 0

ˆˆcos

P

n L

 



View point

75deg

cos 0.25 

Alpha = 1-dot

66.4 deg

cos 0.4 

Alpha = 0.9

