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GLSL by Ray Marching1
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OpenGL Shading Library (GLSL)

• We have learned OpenGL and Ray Tracing

– How to Add Ray Casting or Semi Ray Tracing on OpenGL’s 

environment?

– OpenGL is based on Polygon-based Rendering

• Ray Tracing determines Pixel’s Color by calculating color 

with respect to

– Normal vector of surfaces

– Light position, reflection, and refraction vector

• OpenGL permits One pixel’s color by GLSL programming
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Computational Burden in Ray Tracing

• What is the most Painful works in Ray Tracing?

• Finding Intersection point is complex and slow.

• Sampling becomes the Approximation Technique for 

Intersection by fast computation.

 Ray Marching technique is used for OpenGL rendering
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Ray Marching for Volumetric Rendering

• OpenGL uses Z buffer for Volume Rendering

• Z buffering projects all data onto one scene image

• Rendering requires volumetric operation
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Ray Marching for Fast Speed

• While doing volumetric rendering, 

– first sphere s0 meets object B and fills the volume

– Second sphere s1 and s2 meets object B and fill the volume

– Final sphere, s3 meets object A and Calculate Intersection Point

– It is Faster than Ray tracing
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GLSL Structure2
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How to OpenGL calculate One Pixel Color?

 Vertex shader and Fragment Shader
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Ref: uGL-39-GLSL-Basic
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GLSL Architecture

• Script(vsh and fsh) is compiled and uploaded by 

uShader class 9
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App  VSH  FSH

• Our App transfers VBO handle to vsh

– Vertices, normal, and textures.

– Ambient, diffuse, and specular is given to vsh

• VSH file : do transform of vertices and normal.

– Gl’s result = P*H*vertices

– Given color is not used here  pass colors into FSH

• FSH file: do calculation of colors

– VSH provides color and geometry information.

– FSH calculate RGB.
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GLSL Basic Variable Types

1. attribute

Connected with  VBO

2. varying

Variables in vsh is transferred 

to variables in fsh

3. uniform

Connected with my program
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GLSL Grammar

• It is similar to C language

• Caution: some variables  are very different

– Ex) A= 1  A=1.0

– Ex) vec4 a = vec4(0,0,0,1), a.xyz = vec3(1,2,3)

– Ex) You cannot modify “varying variable”

• varying vec4 diffuse;

• vec4 v = vec4(1,2,3,0);

• diffuse =  v  Error

• See example of solid.fsh in “Blue example” of uGL-45-Sphere-

Gouraud-GLSL

• Reference

– https://www.khronos.org/opengl/wiki/Data_Type_(GLSL)#Ve

ctors
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APPVSHFSH

Variable Connection
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See Example uGL-39-GLSL-Basic

attributes in vsh
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VSH file

Lecture 9
pp. 26

uVertex uses vertex, normal, and texture, u and v  

 Three Attributes are defined.
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See Example uGL-39-GLSL-Basic

uniform in vsh
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uObj::Draw()

uShader::Load()

Our Program
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See Example uGL-39-GLSL-Basic

uniform in vsh
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uObj::Draw()

uShader::Load()

Our Program
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See Example uGL-39-GLSL-Basic

uniform in vsh
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uObj::Draw()

uShader::Load()

Our Program
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See Example uGL-39-GLSL-Basic

uniform in vsh
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Vertex and Fragment Shader

(VSH and FSH)3
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Meaning of “screen and model” in vsh

• gl_Position is rendering result on 2D display

– Screen(perspective mapping) is required

• eyePosition(Viewpoint) and normal vector

– need not perspective mapping(screen)
20

Cam.P

H model

screen

object
H P



T&C LAB-AIRobotics

Vertex shader Vs. Fragment shader
• VSH for only Transform

– Bypassing Our App’s parameter into FSH

– APP  VSH  FSH

• VSH is not so unique in many examples

• FSH is designed to calculate Each Pixel Color

• Keep it in your mind

– VSH and FSH are Not for Objects, 

– But for Each Pixel Color of  objects
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App, VBO, VSH, and FSH

Connection Diagram
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FSH EX1) uGL-02-Polygon-Color

solid.vsh and solid.fsh

23Solid.vsh

Solid.fsh
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uObj.cpp
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FSH Ex2) uGL-03-Object-Camera

solid.vsh and solid.fsh
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Solid.vsh
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Lambertian Diffuse and Phong’s Specular Effect
FSH Ex 3) uGL-10-uWnd-Box-Gouraud
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Whenever OpenGL draws one pixel,

GLSL(Vsh and Fsh) is called by GPU

• As a result,

• eyePosition by model*vertices is considered as

“Intersection Point” by the Ray from viewpoint(0,0,0) 
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Solid.vsh

OpenGL calculates intersection 
point for painting as in Ray Tracing
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Think as in Ray Tracing,

Can you Read it Now?
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Think as in Ray Tracing,

Can you Read it Now?
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î   r̂
camera

ˆ : Illumination(light source)

ˆ : Reflection

ˆ :

i

r

n normal

v̂

P

Light source
ˆL i



T&C LAB-AIRobotics

Lambertian Dot Product for Diffuse
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î   r̂
camera

ˆ : Illumination(light source)

ˆ : Reflection

ˆ :

i

r

n normal

v̂

P

ˆ ˆcos i n 



T&C LAB-AIRobotics

Lambertian Dot Product for Diffuse
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Phong’s Specular Color with Reflected Vector
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Ex4) uGL-40-GLSL-Box-Gouraud

Two types of Diffuse
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Control 
diffuse by 
GLSL
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Ex5) uGL-40-GLSL-Box-Gouraud

Ambient Effect
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Basic Type

Q: Why  lower ambient becomes darker?
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Ex6) uGL-40-GLSL-Box-Gouraud

More Specular by Power and by Factor 
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Simple Cartoon Rendering

• Game with Oriental ink painting 
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Edge is Over colored using Dot Product

ex)uGL-41-GLSL-Dog-Rendering
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Ex.7) uGL-41-GLSL-Dog-Rendering

Cartoon-Rendering
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