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Probabilistic Approaches for SLAM

Why we use Probability?
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Robotics

Why SLAM is Problematic?

Hidden Area

Where am I? We cannot see an entire map.
If I see a map, Without exploration,
I Know position. We cannot get a map
* Localization VS. Mapping
3 {::
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Why SLAM Is Problematic?

Localization and Mapping occur
coincidentally

 Localization requires Map
« Mapping requires position information
— A mobile robot wants Localization and mapping at the same time

WHO CAME FIRST?

! ORé

Localization Mapping

4 (o=
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A robot must do What we did

I amon (10,3),

MAYBE...TT

I know this road,
MAYBE...

How to mix
Two Unsure

Information?
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Everything in Probabilistic Robotics
IS NOT Sure(or Deterministic)
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SLAM Example o

- SLAM: State is NOT directly observed Toe o e
— (1) Every states are considered as Probabilistic Distribution.

Position is NOT a vector
Position is also a distribution 7
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Robotics

SLAM uses Mapping,

which maps Partial information onto Final Results (2)
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SLAM with
Kalmann Filter or Particle Filter

X1 = FXe + W, X = T (X1 W)
z, = Hy X +V, Z, =h (%, V)
Linear System NonLinear System

« SLAM: Simultaneous Localization And Mapping

« Assumption:
— Sensor information is Poor( inaccurate - but Probabilistic)

* Probabillistic Approach
— We are familiar with accurate variable ( x=3, y=2)
— But in an actual world, x is not 3 in general.

9 G
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Why Probabillistic Approach?

« Mapping (or Registration)
— Each scene is Not Perfect. & Probabilistic distribution

— Imperfect scene is Probabilistically merged
— Repetitive Sampling improves accuracy

— Sequential (Continuous) Observation(Scan) is NOT the sum
of each one.

— Sampling(Not all data) saves Computational burdens.

 Precondition:

— Assume that Everything is Probabilistic. 10

{:.
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Tl (A8, Seryinal

Analogy:

Sample (or Particle) is Probability
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Non Parametric Method

« Bayesian Classifier
— Random data X has Probabilistic Distribution

exp {— (XZ_C:; )y } (Gaussian)

Xx~N(u,o°)—

1
o2
— Parametric estimation

« Non Parametric Method
— No explicit distribution like Gaussian
— Parameters: ex) Mean, sigma
— Remind that Gaussian distribution requires ASSUMPTION.

— Sample data generates some estimation function (Inferential
type)
— Non parametric method has amount of parameters like

12
Neural network.

{:.
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kth Nearest Neighbor

* Developed in 1960.
« Easy to understand it (Even very simple)
« Example( Tall and ~Tall)

O o A 4, a
O - R
O O A A

X= height

O ~Tall

13 o=
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In case of Bayesian Classifier

« Find Gaussian distribution from sample data

all
P(x| W) ~ N(ul,aza\ ) I~ N(z,, 0%,)
O

X= height

P(X | Wl) P(Wl) >

g 29 = POIW)PO)
P(X) < > P(X)

LP(X)=ZF’(><|V\/i)F’(Wi)—

P(Wl | X) —

14 i
<
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Nearest Neighbor

* Find the nearest sample to a given X

~Tall& Nearest one Nearest one ->Talll
O o R
O O A 4
XV= height

* |fthe nearest one is in a class wl, then x is wl.
e |f the nearest one is in a class w2, then x is w2.
. Very simple.. 15
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Kth Nearest Neighbor

« “Kth” means that find the nearest neighbors with k
number.

« More number class is the result

O QA/&A A
O /O R
O O A. A

_ X= height
Ex) 3th Nearest neighbor

Tall cases(2) and ~Tall case (1)
2>1.
therefore, it is tall.

16 o=
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Robotics

Hand Writing Recognition

Example 5x5 writing

Instance = 25 dimension vector

X=[ 0,1,1,0,0, 1,1,0,1,0,
,0,0,1,1, 1,1,1,1,1, 1,0,0,0,1]

S&< si

Distance= |x1-S1|+|x2-
S2|+...[x25-s25]|

Find the minimum distance.

Example: testl
See result.

Oops.
Recognition is so easy
like this?
— Generally, No.
Why it is so good?

17 (o=
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Features of KNN

 Even Image is possible
— EX) Instance x is 640x480 dimension.

* Most learning method do learning after sampling.

 When kNN is learned?
— When Sample is added, there is NO learning.

« However, kNN does not do learning procedure.

« Learning occurs, when we find nearest neighbors.
— =2 Lazy learning.

* Problem
— With more sample, comparison is painful process. 18 g
<>
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Why KNN rather than 1-NN ?

* 1-NN finds the nearest neighbor.
— Very specific solution ( Over fitting)

« K-NN finds the k nearest neighbors.
— Less specific solution > Not Sensitive to Noisy sample.

Result: triangle
A: A

A

1-NN : triangle i
K-NN : circle 19 {‘
<D

Dept. of Intelligent Robot Eng. MU



Distance of KNN

« When X IS an instance vector,

« Generally, 2 norm is used for distance measurement
— 1-Norm: absolute value , |X|
— 2-Norm: vector distance

| X ||= /X2 + Y2 + 27

« Distance of NN
— S={s1, Sz, Ss,...Sn}
— If the current X is added, S={ s, Sz, Ss,...Sn, Snv1}  Where
Sn+1 € X.
Distance = | X—s, [I=ll €, [l=/&? +€F +€F +...+ €5,

20 (o=
<
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Discrete Problems for KNN

« Continuous data « Hand writing example
« X=(0.01,0.1,0.4)
« Si=(1.2,0.4,0.2) - X=(0,1,0,1,0,0)
- Si=(1,0,0,0,0,0)
« Distance = 1.2434 - 5)=(0,1,0,0,1,1)
« Distance

* [[X-SI|| = sqrt(3)
* [IX-S)|l = sart(3)

 Discrimination is not so
accurate! 21
S
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Clustering Method
Important Tools for Intelligent Robotics

« Pattern recognition requires Class definition

O D
oo  uA

OQQ A,

A

A 2 classes

A

« How many classes here?

O @ QCE% © o
~Tee  eeg &
O O ole O

22

-
-

* There are only two lumps = Two clusters. <
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Clustering Method find
how many clusters are there

« Many clustering methods.

« Example) K Means Clustering Method.

« 1. Assume there are K clusters.

« 2. Guess each centroid of cluster.

« 3. Find k points to closest centroid

* 4. Recompute the centroid of each cluster.

O Q O ‘ D Ex) 3 means clustering
‘Eb \ Centroid
© o O

23 (o=
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Robotics

Example) K means Clustering

M1l 1 01
Test2.m Xge ~ N(1,0)=N },{ D

(181 2 0.1
e NN J,[M 1})

s % o L
s o.: .:'. ®
:.'..:0 . v ° "?o
S o, e °® ’00 ®e
L ] e o. . v, o
Cons | R M
¥0'..:.: K g'. o .....o :
[ 4 .{ o.zo: f...‘..... o> o
°°® & ® g
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Example) K means Clustering
Centroid comes close to mean value

5,.
4‘- [ ]
3 . .
: R
2ﬁ 0. 0. ° 0. *
o8 .
1L R i L
°.o JfH——
0 G
1+
2=
_3' r r r r r r r r i
-4 -2 0 2 4 6 8 10 12 14
C1=(1.1796, 0.9455) C2=(8.2737, 1.2528) o5 .
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Centroid of Cluster
What is 1t?

* In k means cluster,
— centroid approaches mean value of the test distribution.

— But it is not on mean value.
— Why?

* Think the role of K mean cluster.
— K closest points are Not whole data. Just Sample.

- In each turn, K mean clustering method find the centroid
of K closest points.

— If Initial centroid is biased, centroid is sometimes biased.
 If we guess wrong number of centroid, how it works?

26 (o=
<
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Why we need Observer?

Probabillistic Approach
toward Kalman Filter
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You Measure Everything?

* Your graduation is on Prof. Y’s decision

Graduation
Is OK?
‘n :
lll ‘»
‘ '\

~ e
e,

J

28 (o=
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Robotics

It IS a Black box

When X>?,
Graduation
is OK.

\Graduation!!

h____

Fail, T_T... /
\,!)

‘u ‘Q/
g ﬁ\ We cannot read his mind.
<%
'\ ' J But we can estimate “X>?"
W

<D
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So, We guess X from Observation Z

g‘,"’)
Dl N
) o
e -
\/ </
Your Estimation His standard
Your Measurement His mind
Your Guess His viewpoint
Z: observation X: Actual State
We only know Z We don’t know X

30 o=t
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¢Ean I think

G Can you Read his Mind?

Z= 0.9
Excellent
Fail
Fail
Z= 0.6 /
Not bad
Graduation
Z= 0.8 )
good Pr(X|2) is about

:l_/':;; 31 éif
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Robotics

How we Improve P(x|z) ?
The best way Is Repetitive Confirmation

X=graduation

Pr(X|Z) is improved
2
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You Focused on
Why P(X|Z) Is improved?

We Do Not know X but, P(X|Z) becomes
increase to 1

P(Z|X)

7=0.9: X=0.5 Z=0.7: X=0.8
33
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Basics of Control
for Kalman Filter
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Kalman filter

« Kalman Filter(KF)

— Estimates current state with observed state.
— Estimation error is minimized by using Gaussian concept
— Prediction + Update process.

* For SLAM, why KF is used?

KF minimizes
estimation
/ error variance

q2 q3
y y

X=0 X~N(10,3) X~N(11,10)

35 (o=
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KF model
X, =FX_,+Bu, +w,
z, =H/X +V,
Test3.m
)’Zk|k—1 — Fk )/Zk—nk—l + Bkuk Noisy data(blue) is filtered out as Green data
Rk =F Pk—]Jk—leT +Q 4

/A

Yo =4 — Hk)A(k|k—1
S, = HkPk|k_1HkT +R, |
K¢ = Pk|k—1HkT Sk_l
)A(k|k = )/Zk|k—1 + Kk 37k
Pk|k — (I - Kka)Pk|k—1 o5t

r r r r r
0 100 200 300 400 5003 6

Dept. of Intelligent Robot Eng. MU



Pre Knowledge for KF.

« State space expression
« 27d order mass-spring-damper system.

mX +cX + kx = F(t)
« Second order differential equation has two solutions

mX, +CX, + th =0 Homogeneous Solution

mX, +CX, + kXp = F(t) Particular solution

37 (o=
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Easier than 1st order,

ay"+by'+cy=0

Define Dy = dy

dx
—aD’y+bDy+cy=0
— (aD* +bD +c)y =0
:—bi\/b2—4ac

2a

« D operator for simplifying 2"d order Differential Eq.

D

38  4o=C
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ex)y"+5y'+4y=0
D°y+5Dy+4y=0
(D*+5D+4)y=0
(D+1)(D+4)y=0

Robotics

(D+1)y=0 or

j> (D+4)y=0

Remind 1st order Equation
(D+1)y=0 or (D+4)y=0
y+y=0 or y+4y=0

y=Ce™ or y=C,e™

s y=Ce*+Ce™

39 o=
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Mass-Spring System

my"+ky=0 y = cleJ%iX + (:ze_J%iX
mDZy + ky — O _ CleWiX _l_CZe—Wix

k = C, (cos(wx) +1sin(wx))
(D2 + E)y =0 +C, (cos(wx) —isin(wx))

= Acos(wx) + B sin(wx)

Hyperbolic function

Remind
(D — 21)(D - Zz)y =0
= y=Ce?" +C,e?

40 o=
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Particular Solution of 2" order Diff. Eq.

1 ex)y"+5y'+4y=cos2x 2 (D*+5D+4)y, =cos2x
(D* +5D+4)y =c0s2X if y, =asin2x

(D*+5D+4)y, =0 y"=—-4asin2x, y'=2aCos2X
y, =Cce*+c.e ™ =
—AdaSin 2% +
3 5*20:C0S2X +

A4* oSN 2X = COS 2X

L 4 100 CcOS2X = COS 2X
:ESII’] 2X+Cle +Cze a:]_/lO

y:yp+yh

41 o=t
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Particular Solution is
the Controller

U : controller

my +cy +ky = F(t) = u(t)
U=0 - Homogenous solution - System dynamics

my+cy+ky=0

If we define y=x,Y=X, , every dynamics is
expressed as state variable x.

—> State space

42 (o=
<
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State Space Notation

my+cy+ky =0
X =Y [> mx, +cx, +kx, =0 :>X2+%x2+%x1:0
X, =Y
AT I
e )
2 m m 2

43 (o=
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State Space Notation with Control Input

my +cy+ky=u
=Y :> mX, + X, +kx, =u :>X2+%x2+%x1:u
X, =Y
0 1
SHEE !
X, —— — X 1
m m

44 (o=
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Laplace Transform and Eigenvalue of A

my +cy+ky=0 0 1
(mD?+cD+k)y=0 =1 ko c X
(D—w,i)(D+w,i)y=0 m.m
_—cEVel-Amk _ ¢ o Av=Av
- 2m Coam (A—Alv=0
C Det(A—A1)=0
“om! Wy ix —Wyix
y=e " (ce™" +ce ) 1 1 )
Det| k C = (£+/1j+—=0
L m
2+ 11520

45 _
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State Space Model

« Exactly, Linear Model is expressed as,
X = AX+ Bu Eig(A) are root(Poles).
* Non linear system dynamics
% = f(X)+Uu
« Generally, Non Linear system dynamics

X=f(X,U)

46  (o=C
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Robotics

Feedback Observation

« Assume that state variable x can be observed.
« But it is sometimes impossible or corrupted with noise

X = AX+ Bu
y =Cx+Du
%cial case
g:joint angle-> x
s:encoder> vy C — 11 D — O
Q Robot
y==x
C!

47 o=
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Robotics

2"d order Mass-Spring-Damper

« Example) exms.m

2 - =i

\
\
\
S o o o
()] SN N o N
o
Hi;
P
e
N
T

— FERTERTERVERY
——— IRV
. LY
)(() 0.5 X 1 0 200 0
State space Time domain 48 "
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Our Model is Perfect?
No, it has uncertainties and Model is Imperfect

2nd order mass-spring-damper system

0 Y =CX +Du
X = _K _E X +Bu+ :[1 O]|:X:|+OU
m m X
=AX +Bu =X
X:AX+BU+N Y:CX—I—DU-I—N'

N - Process Noise N': Measurement Noise

49 (o=
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Process Noise

X =AX +Bu+N 0 1 N
= A+ Bl +_ X =] k c IX+Bu+| "
N : Process Noise - —— N

a

state space

Ex) exmsprocess.m

% m*xdd + c*xd + kx = F = 0
for 1=1:1000
==[z; x xd];

MNa 0.l1l*randn;
Nwv O0.1*randn;
N=[Na,Nv]";

xdd = (0-k*x—-c*xd) /mtNa;
xd = xdd¥*dt+xd+Nv;
®x = md¥dt+x;

end

{:_
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Robotics

Measurement Noise

Y =CX +Du+N" xd ° | X = AX
X
=[1 0]{1+OU+N'
X X y
Y=CX
=X+ N
Remind that

All measurements x for ‘e=xd-x" are actually Y.
Ex) exmsm.m
® m*xdd + c*xd + kx =
for 1=1:1000

s=[=; ® xd];

y=x+0.1l%randn z f%ﬁ} i .
) A

X=¥r 30} < x
xdd = (0-k¥x-c¥xd), j % — / IR i ﬁ W ' w »L [“
x , W

(
®

¥xd = xdd¥*dt+xd+Nv;
¥ = md¥*dt+x; -6
end 8 Sy

-----------




Process and Measurement Noises
are UNAVOIDABLE Problems

 In spite of all, why we did not add noise model?
— We neglect noises in many cases
— Noise model is somewhat complex and unpredictable
— Also, you are undergraduate student..

 Intuitive Example
— Encoder signal is an actual value?
— Encoder is perfect but Joint angle is NOT perfect
— Assumption of that encoder is same with joint anglg,.. ...

Modularized Mechanic Structure

Intefligent Controller  Absolute Encoder

Marker signal is not true.

Encoder is perfect Why? It is attached on deformable skins
I T - U

PFE A3 kb crinad’ siinbls: enat ek v i T o el e
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Expectation in Probability

E{x}. Expectation, What a value occurs with Prob.
E{x}= j xp(x)dx or = xp,
K

Remind Probabilistic density function

— Ex) Gaussi —uY
X) Gaussian PDF(x) = 12 exp(—l(x uj)

Expectation of “1” of Dice throwing

1 1 1 1 1 1
E{x}=>» xp, =1=4+2=+3=+4=—+5_4+6=

. 6 6
2%
= k6 = U
Expectation converges into Mean value.

54 (@
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Goal of Kalman Filter

3.Update P'by P 4.minimize
/ 7 Estimation Error

e =X-X —
T — Kalman Gain
2% ko / P'=E{e'se'}

Predictionby A min P = E{e.e}
1
model, X —> K \
AX, +BU, .
X =AX+BU
/ Continuous form 5.measurement, z
< L —s Correction of
— | . | 1 0 . ~ :
X Xea =A'X, +B'U,,, | X PwithX"K,z,P
1. Estimation of X Discrete form

X is an actual value,
but we don’t know it.

55 o=t
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Kalman Filter

Initial % O

Estimates Xk—llk—l =X
S Kalman Measurements

Gain
Prediction
Project Update
into k Estimate
update
Projected Update

Estimate T < Update states

Pk|k = (I - Kk Hk)Pk|k—1

56 G
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Robotics

z, =H/X +V,

X1 = Fk Xk T Bkuk
T
Rk = FR g Fe +Q 4

Sk = HkPk|k—1HkT + Rk
Kk = Pk|k—1HkT Sk_l

Y =4~ Hkxk|k—1
X = X T K i
Pk|k — (I - Kka)Pk|k—1

57

-
-
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Kalman Filter Definitions

state vector x cannot be directly measured
X . state vector

State Equation
X, =FX_ +Bu +w,

z, =H X +Vv, . :
Sradiction R : state vec_tor estimate | _ (0,Q)
Z : observation vector NS

Rt = F X ey + B X~ N(x,P)
Kt Tk Tk © Pk u : control vector

Pt = FoP i | V=NQOR)
a1 = FBega e +Q F : state transition

Kalman Gain B-control

S, =HPyH +R, P:covariance of state vector estimate

K¢ =RyHe' S Q:process noise covariance

Correction R:measurement noise covariance

Ve =2 —H X4 H: observation matrix

),Zk|k = ),Zk|k—1 + K, Yy )’Zk|k—1 ' Prediction (Xp)

Pk|k — (I — Kka)Pk|k—1 i

Ry - Estimate (xe) 0 &
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Derivation of K.F.

X1 = B X +W, 3 X4 = FX +W
|
Ly = Hkxk +Vy Simply, we think time L = ka TV
invariant system
X : actual value > Unknowns

X :estimated value > Estimation from Model

A But, How we update it?
Our GO&' . X—>X Update )’Z with y

Before update After Update
(Prediction)

A’ — A<|k—1 A = A<|k

59 (o=t
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1. Estimation of X

XZAX+BU )(k+1 X,

Continuous form = AXk + BU Kl

- $
Xk+l — AX 4 BUk+1 Xk+1 1-|—AtA)Xk -I—AtBUk+l

Discrete form = A<+1Xk + Bk+1U k+1

We want to know an actual value, X
X Is not measured directly
Thus, instead of X, we use estimation, X

But, remind that there i1s Process Error 60

o
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A

1. Estimation of X with X and covariance, P

 Perfect Model
X = AX +BU,

e Process error

Xin =AX +BU, , +Ww,,

 Actual value X is divided into two factor
P

o A

X

=< O

61 go=C
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Robotics

2. Prediction of X by system model

+ Estimation X changes under system dynamics

Xia =AX +BU,  +W, j> Xk+1 +BU, 77

Actual value, X

/
k+l k+1

X|k

X = AX, +BUk+1+Wk+1 >Zk+1:AXk+BUk+1

62 (o=
' N
Dept. of Intelligent Robot Eng. MU



A

2. Prediction of X by system model

- Estimation X, is given, but X, , is Not clear.

« Thus, we use a new concept, Prediction.
— Prediction is temporarily used by system dynamics
— Prediction will be updated by measurement

A A '
Estimation X > X Prediction
Wk
p p:
Xk X k+1
| |
X', =AX, +BU, e
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3. Prediction of Covariance, P

« Definition of Covariance, P

P — E{GZ} e=¥X—X P means how much estimation is biased
! from an actual value

* Prediction of Covariance, P’
P'=? e'=X'-X
P'= E{ek+l |ek+1 '}
— E{()A('kﬂ_ Xk+1)2}
= E{(R'- Fx—w)?} E{w}=Q
= E{(FR— Fx—w)%} /
= E{(Fe—w)’}= FE{e}+ E{w’}
=F*P+Q+0 o4 &=
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Robotics

4. Definition of Kalman Gain
Measurement Updates Estimation

Actual System

) Estimation X —> X
But we don’t know it

Prediction
X = FX +W X'\ =FX,
Zk :HXk v Z k+1_H k+1
w, v cannot be <
directly measured, date -
put, F and H can be zk+1 2' .. — K gain - xk R

Measurement y4 Estlmatlon is
updated

X-X'=K(z-12"

Dept. of Intelligent Robot Eng.

65
ga
MU



A\

State Estimation X Xk+1 — ka +W w, v: Noise Additional
A Reference
Estimation Error €= X—X Z, = HXk +V

Every values have Prob. distribution

Covariance P P = E{ee' } = E{e*}

Objective ee €6, ee —0 0
Prob. Error E = E
Becomes zero. elez ezez O ezez — O

->Minimization
Prediction )’ZkJrl = F)’Zk We know only F, but don’t know w and v

Generally, X .,'# X 4

Kalman Gain definition, K (Brilliant idea) 7 = Hx<+V: Actual

X=X"+K(z—-HX Z . measurement
\z — HX': Observation error
)’Z-)/Zl: K(Zk _2lk) and 2Ik - H)’Z'k-l-l
),Z_)’ZI:K(Zk_H),ZIk_i_l) o {:z

Dept. of Intelligent Robot Eng. MU



4. Kalman Gain
How to minimize Estimation Error
« Estimation Error
e=X—X
« Covariance = cost function of estimation error

P = E{e’} = E{(X— %)’}

P = E{e?} = E{(X— %)%} P=E{(X+K(z-H&)-x)’}
%=%'+K(z-HR = E{(%'+ K(Hx+Vv—H&")—x)*}
6= %—x = E{(RX'=x+Kv—KH (%'-x))*}

e'=R"—X = E{((X=x)(1 =KH) + Kv)?}

67 (o=
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Robotics

5. P update

4. Kalman Gain
1 Dim example of Minimum Estimation Error

P = E{(e'(1 - KH)+ Kv)?}

= (1 - KH)?E{e?}+ K2E{u?}+2(1 — KH)KE{ev}

= (1 —KH)?P'+ K2E{uZ}+0 Y

=(I —KH)*P'+K*R R = E{v*} Independent

Covariance=0

Our goal is Covariance P becomes smaller

O OH(I—KH)P+2KR =0
dK
HP'  HP'

K: 2 —
H?P'+R S
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Remind Kalman Filter

X, =FX _, +BuU, +Ww, Initial ¢
Estimates " k-1k-1

z, =H X +V,
R Kalman Measurements
Kgka = FXe e + Byuy Gain
_ T
Pk|k—1 - Fk Pk—]Jk—le "‘Qk 1 Sk — HkPklk—lHkT + Rk
Kk = Pkk—lHkTSk_l ) v =72, —H, X
Project | Update Yx k k “klk—1
into k Estimate o )
Xk|k - Xk|k—1 + Kk Yk
Projected Update
Estimate T < Update states

Pk|k = (I - Kk Hk)Pk|k—1
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Understanding Matlab Code with K.F.

X, =FXx_,+BuU, +W,  We don't know exact w, v

z, =H.X +V, = . But, we know Covariance from
Gaussian Distribution of w,Vv.

Initial Estimates )A(k_ﬂk_l(Xp — 3)
Xkt - Prediction (xp)
X 11 - EStimate (xe)

{:.
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Understanding Matlab Code with K.F.

1. Prediction

o Prediction
X =FXx_+Bu +w, X1 - Prediction (xp) Ropr = FX gy + Bat,
z, = Hi X +V, R, 1. - Estimate (xe) P, =FP_ . Fl+0,,

W = Eqrt{QJ*Ein{D-l*i] r
v = randn(l) *sagrt (R) ; ' Iti

(1) *sqrt (R) X = By + Bty + W IEI;Ltilrilates T et
z,=Hx_ +v,

% system dynamics
x = (l-dt)*=x + w; Kalman
z = h¥%x +v; X = FiXi gy + Bitiy " Gain
I
B = FiBeprfs T 9xls S,=H.P,, H'+R
F = (1-dt):
K = E‘ck—lHkTSSc_l
. . Project Ur

% prediction into k Est
Xp = F*Xe; —
Pp = F*Pet+();

F'rc:_jected Update

Estimate Covariance

pept. or Lntengent RODOoT ENng. MU



State variable cannot be Directly Measured
We should estimate state variable by Prob.

X =Fx_,+Bu+w w~N(0OQ)

—> X1 = FcXepea + BUy
X = F X +B.u,

prediction estimate

P:covarlance of state variable estimate
T
Rk = B Fe + Qi

72  (S=C
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Understanding Matlab Code with K.F.
2. Kalman Gain

z, (observation) = H, x, +v,, vV~-N(O,R)

% prediction :
Xp = F*xe; * New Estimate
PFp = F*Pe+Q; = Prediction + Measure *

i . Kalman Gain
Ralman gain

E
S = h*Pp*h + E:
ke

. = Pp*h/5;
Kalman Gain o
% Correction or Update T — “Gain B
v = (z— h*=xp); Sy = HkPk|k—1Hk + Ry -
e = Xp+k¥y; To -1 e = il + K,
2 , K = BagaHi S K, =B, H/S,™

Pe = (l-k*h)*Pp;
73
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Understanding Matlab Code with K.F.
3. Correction(Update Estimate)

« We want to know X, ; butonly know estimate >A(k_]4k_1
« We also know prediction )A(klk_1

% Correction or Update Measurements
y = (z— h*xp);

xe = Xptk¥vy;

Pe = (1l-k*h)*Pp;

v, =z, —H,x
Update Ve = 2k Vi1
Estimate S -

xﬁk“xﬁb4'F£%J%

Correction |
37k =4 — Hk),zk|k—1

— 1 Update states

)A(k|k — )A(k|k—1 + Kkyk
Pk|k — (I - Kka)Pk|k—1
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Example Test3

0.9~
0.8~

0.7

3 —

‘ 0.6~
2.5 Blue: Real dynamics 05

| Red: Prediction
) 0.4~

2 Green: Estimate
‘ 0.3
1.5 o2r

o1~ Green(corrected estimate) follows
Red(Prediction)

0.5+

o / 50 100 150 200 250 300

Process Error
75 (o=
R S
Dept. of Intelligent Robot Eng. MU



Covariance P becomes very Smaller.

blue:real, Red:Prediction Green: Estimate

0.8
0.6

0.4

,‘/144“‘4444'44 —F—7 ]

0.2

0 D £ r r r r L
0 50 100 150 200 250 300

* Process Noise Covariance Q makes system to be
oscillatory.

« P(Covariance of state variable estimate) becomes
smaller - State variable estimate is believable.
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