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Past or Future Rewards

• 1. Viewpoint at the Terminal

– Return is the sum of all PAST rewards

• 2. Agent’s viewpoint ( RL uses this)

– Return is the sum of all Future rewards.
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Reward and Return

• Reward : get a reward in each state transition

– Whenever an agent moves, it gets a reward from environment

– Ex) +1,+2 at terminals and -0.1 at each turn 

• State : state varies by time flows (                              )
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Reward and Return

• Return : summation of all rewards.

– Ex)  Rewards are -0.1,-0.1, 1.

– Return is -0.1-0.1+1 = 0.8

• Question: Return at another position?

– Ex) Rewards are -0.1, and 1

– Returns is -0.1+1 = 0.9
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Return at Different Position

• Return is a function w.r.t. State Position
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Example of a Single Return 
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However, There are Many Return Values 
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Summary of Reinforcement Learning

• Future Reward

– If an agent moves in future, how much reward does an agent 

obtains? ( Not the past reward)

• Return = sum of all possible future rewards

• Bigger Expectation of Return( sum of all future 

rewards) is Better for us  Reinforcement Learning!
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Expectation is Hard works.

• State value is based on Expectation

• In other words, we collect many path data.

– How we estimate expectation?  We need Brilliant Idea!!

• Expectation is estimated by Iterative Method
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Estimated Expectation with IIR Filter

• In Digital signal processing (DSP)

• Finite Impulse Response (FIR) Vs. Infinite Impulse 

Response(IIR)

• Basic concept

– A set of Impulses represents system behaviors.

– FIR is a set of impulses, but IIR is the recursive set of 

impulses. 
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Average Filter 

Ex) ex/ml/l10iir.py
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• IIR Filter : 

• S becomes 

• averaged value, 0.5.
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Important Meaning of Return 1

• Think next two cases

– Case 1) X3X2X1X0 

– Case 2) X3X2 X3X2 X3X2X3X2X1X0

• With Negative Reward( eg, -0.1)

– Case 1)  -0.1*2+1 = 0.8(Return)

– Case 2)  -0.1*8+1 =0.2(Return)

– 0.8 is better than 0.2. 

• Without Negative Reward 

– Case 1)  0*2 + 1= 1

– Case 2)  0*8+1 = 1

– Question : case 1) and case 2) are equal?????
13
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Important Meaning of Return 2

• We Must think that Returns will be Expected.

– The Returns of Case 1) and Case 2) will be averaged.

• After Many cases are averaged, what happens?
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Expected Return finds optimality

without Negative Reward 

• Remind that  -0.1 reward is helpful to find the optimality

– Long distance journey is NOT good for an agent.

– Case 1) X3X2X1X0 (best)  -0.1*2+1 = 0.8

– Case 2) X3X2X3X2X3X2X3X2X1X0 (poor) 

-0.1*8+1 =0.2

• But, without negative reward, expected return is also 

good for which direction is Good or Not.

• Anyway, we can introduce the accelerating method by 

using discounted return.
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Summary of RL

• Future Reward

– If an agent moves in future, how much reward does an agent 

obtains? ( Not the past reward)

• Return = sum of all possible future reward

• Discounted Return : 

– When a reward is far from the current state, discounted rate 

is larger. 

– This makes an effect on finding the optimal path without 

wasting repetitive state transitions like  [3,2,3,2,3,2,3,2,1,0]

• Episode : one sequence from initial to terminal state 16
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Monte Carlo (MC) Method

• If a state, s is equal to a position at x,

• From state, s, we can tell the function of position x. 
18
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Monte Carlo (MC) Method

• Expected Return= State value Function

• Monte Carlo: Update V(s) with Return R along saved 

state transition history

– MC does not use discounted return, but uses Return.
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Example of MC Method
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Example of MC Method, l10mc1. py

• +1 reward at left, +2 reward at right, otherwise r=0

• How it works

21
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Example of Episode
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Example results with 1000 Episodes

• V(s) says that Right Direction is better
23

Alpha=0.01
Alpha=0.1
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Example of More Complex Cases, l10mc2
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5000 Episodes 

with low alpha value(0.001) 

25

• When number of episodes increases, low alpha value 

contributes for convergences, but it is not so tough.

• The results says that RL gives us determination in 

the more detailed ways
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Summary of Monte-Carlo Method

• MC directly uses Return for update state value.

– It is very Intuitive method.

– MC is often used for verifying system characteristics.

– Many casino games are analyzed by MC.. ^^

• MC does not use Discounted Return, 

– No gamma

• Shortcomings: 

– MC stores all history of state transitions

– If state transition becomes longer, it becomes a handicap.

26
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Discounted Return

• Discounted return is using the weighted reward. 

• Far future rewards are strongly reduced.

• Near future rewards are slightly reduced.

• eg. S3S2 S3S2 S3S2…... S3S2S1S0

– Far future rewards are meaningless.

– The result of long journey becomes neglected….

– Gamma Reduction Ratio is used.

28



T&C LAB-AI

Dept. of Intelligent Robot Eng. MU

Robotics

Definition of Discounted Return

• Discounted Return

• Why Discounted Return is effective without -0.1 rewards

– Best case,  s= [ 3, 2, 1, 0]    reward +1 at s=0

– Not an optimal case,  s=[ 3,2,3,2,1,0]   reward + at s=0

– Which one is a larger Return?  
29

1 1

0 0

      (0< 1)k k

t t k t k

k k

R r r  
 

   

 

   

0

0 1 2 2

0 1

0

 (  R ) 0 0 1k

t s s t k

k

R or r    


   



    

0

0 1 2 3 4 4

0 1

0

 (  R ) 0 0 0 0 1k

t s s t k

k

R or r      


   



      

2 4 



T&C LAB-AI

Dept. of Intelligent Robot Eng. MU

Robotics

Examples of a Single Discounted Return
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State Value, V(s) 

Stochastic version of Discounted Return

• Expected Discounted Return (=State value)

– Average of all future reward. Remember that there are many 

paths. 

ex) S=[3,2,3,2,1,0] ,  S=[ 3,2,3,2,3,2,1,0] , S=[ 3,4,3,2,1,0]

– We need to average all possible cases  Expectation

• Definition of State Value, V(s)
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Meaning of Discounted Return 

• Path information is resolved in State Value.
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RL Summary

• Return : 

– sum of all possible rewards

• Discounted Return: 

– sum of all discounted rewards using gamma

• Expected Return: average of (discounted) return

= State value, V(s)

• Episode : one sequence from initial to terminal state

• State value estimation with Two Different methods

– 1. Monte-Carlo Method

– 2. Temporal Difference Method

33
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Temporal Difference in RL

• Back to State Value Definition

• State value

• Without History information  Temporal Difference
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Temporal Difference:

The Crucial Idea in RL

• Observe the Current State, s

• State value: V(s)

• Random Movement by Action: a

• Sense-and-action

• Update State Value, V

• Think expectation by alpha (0.01 in general)

36
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Example of l10td1.py
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Result of l10td1

• MC shows nearly STRAIGHT Line.

• TD shows Curved results, Why?

– Think Gamma
38

1000 episodes with alpha=0.1 2000 episodes with alpha=0.1 2000 episodes with 
alpha=0.01
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39

Example of More Complex Cases, l10td2

0 1 2
3

4 5 6 7 8 9 10s=

Reward= 2Reward= 1 Reward= -0.1

1000 episodes with 
alpha=0.1

1000 episodes with 
alpha=0.01

2000 episodes with 
alpha=0.01

• TD shows better performance than MC
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Ex-1) Baskin Robbins Game

• Initial state, S=0

• Terminal state, S=31

• RL Agent says 1,2, or 3.

• Then we says 1,2, or 3.

• Finally, RL wins if you says the number over 31.

• Reward

– If RL loses, RL obtains -1

– If RL wins, RL obtains +1.

• How it works?...
41
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Baskin Robbins 31 Game

• Example

– Agent        1,2       678,             , ….      , 23,24,          ,28,29,30

– Opponent       345,        9,10,11 …   22            26,27 ,31

– Opponent speaks 31 and loses a game.

• RL designs

42

S (22)

Opponent  …, 22 Agent’s action
 23,24

S is not
Determined

Opponent  …, 26,27
(Environmental changes)

S’(27)
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Hint for Every Problems.

43

• In Baskin Robbins game, the next state is NOT 

determined Because your turn is added.

– RL moves from 0 to 3, then your turn moves from 3 to 4~6.

– RL feels that action 1, 2, or 3 can move from 2 to 6.

– Thus, RL works on stochastic way.

• Like what you did in Baskin Robbins game, RL 

results says that RL obtains the best reward at 27.
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How to Build Baskin Robbins Game?

MC example

44

RL’s turn

Your 
turn

RL loses a game.

RL wins a game.
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Prob.1. Complete “YOUR”

Baskin Robbins Game with MC

• Example of MC result
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S=27
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Prob.2. Complete “Your” 

Baskin Robbins Game with TD

• Example of TD result
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S=27
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Discussion

• Prob. 3.  Explain Why 27 is so important? 

• Prob. 4.a. Why MC has so many fluctuations?

• Prob. 4.b. How can we REDUCE many fluctuations 

like below result? Show your Result

•

47

Many 
fluctuations
(Dirty)

Prob. 4.a Prob. 4.b

Smooth Here!
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Prob.5. Discussion about TD Results

• Prob. 5.a. From TD Results, V(s) is slightly positive 

from s=0 to s=20.  What is the meaning of it?
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Prob. 5.b. 

• Prob. 5.b. After 2000, 4000,and 6000 episodes, TD 

shows this tendency. 

– 23 is better than 25, and 27 is better than 23. 

– What is the meaning of it?
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23

25

27
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Ex-2) Q-Learning : l9q1.py

• Q-learning has two modes.

• 1. Exploration: random searching for update Q value

• 2. Exploitation: Following Maximum Q value

– An agent follows Maximum Q value

– Argmax(Q(s,a) = a*  Best policy(action)
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'
( , ) (1 ) ( , ) ( , ) max ( ', ')

a
Q s a Q s a r s a Q s a      
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